
2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 1/27

SDK API wide overview

version 1.3

2022-01-04

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 2/27

Document overview
The following API document will give an overview on how to use the different backend calls in the SDK of CloudBackend (CBE).

Select the tab of your language of interest to view the code and added usage examples. This will then select what is printed.

This document should be used in conjunc�on with the SDK tutorial and QUERY user guide.

Conventions
Describing text is printed in font Calibri.

The rela�on of the CloudBackend layers is illustrated as

CloudBackend system

Classes
The classes used when wri�ng programs using the CloudBackend SDK API.

CloudBackend classes
CloudBackend - Copyright © 2020-2022



https://www.cloudbackend.com/docs/Tutorial.html
https://www.cloudbackend.com/docs/QUERYug.html

2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 3/27

CloudBackend
CloudBackend is an EntryPoint into the SDK. Crea�ng an instance of CloudBackend will be the first thing you add. To start using the
SDK a developer needs to call logIn to get an instance of CloudBackend.

C++

CBE::CloudBackendPtr cloudBackend = CBE::CloudBackend::logIn(Username, Password, Tenant, accountDelegate);

Once signed in the developer will be able to access the users account, containers, objects and other func�onality. The variable has
now been assigned the root container and can be used to begin accessing containers and objects in the account. See the account
sec�on for more informa�on on how to access the root container.

C++

CBE::AccountPtr account = cloudBackend->account();

CBE::ContainerPtr rootContainer = account->rootContainer();

When you have signed in and have your account you will be able to access your root container as shown under the Account. On the
root container you will be able to perform queries to see what is in the account and add data to the account as shown under
Containers. Querying will return Items that can be either Containers or Objects as detailed under Items.

For a detailed walkthrough of how to get started using the CloudBackend SDK see the SDK tutorial.

Language specific implementation details

C++

This is the base of the SDK with all its features. It requires C++11 or later.

CloudBackend - Copyright © 2020-2022



https://www.cloudbackend.com/docs/Tutorial.html

2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 4/27

Getting started working with CloudBackend
Declaration:

C++

static CloudBackendPtr logIn(const std::string& username, const std::string& password, const std::string& tenant, CBE:

Description:

This should be the first func�on called when using CloudBackend and should give access to all the other func�onality within the
SDK as well as signing in the user.

Parameters:

username is the username of the user being signed in
password is the password for the user being signed in
tenant is the iden�fier for the tenant
delegate uses callbacks onLogin() or onError() in class AccountEventProtocol on this comple�on.

Usage:

C++

CBE::CloudBackendPtr cloudBackend = CBE::CloudBackend::logIn(testUsername, testPassword, testSource, accountDelegate)

Declaration:

C++

CBE::AccountPtr account();

Description:

The account is the entry point into the users account and container structure through the root container. Addi�onally it provides
informa�on on the account of the user.

Usage:

C++

CBE::AccountPtr account = cloudBackend->account();

In addi�on to signing in the user, the CloudBackend will provide access to the account, a root container, and some other
func�onality.
See account sec�on for more informa�on.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 5/27

Advanced Querying
Declaration:

C++

virtual void query(uint64_t containerId, CBE::ItemDelegatePtr delegate);

Description:

This is a call to get a list of items in the container. It is intended to be used as a shortcut when the developer knows what
container they want to access. To access the root container the developer should use the account. Implement callback
onQueryLoaded in class ItemEventProtocol to receive the callback.

Parameters:

containerId is the numeric id for the container you want to query. This would need to be retrieved from the parent
container.
See Account for root container id.

delegate uses callback onQueryLoaded() or onLoadError() in class ItemEventProtocol

Usage:

C++

CBE::ItemDelegatePtr itemDelegate = getPtr();

cloudbackend->query(containerId, itemDelegate);

Declaration:

C++

virtual void query(CBE::container_id_t containerId, CBE::Filter filter, CBE::ItemDelegatePtr delegate);

Description:
Call to get a list of items in the folder using a filter. This is intended to be used as a shortcut when the developer knows what
container they want to access. To access the root container the developer should use the account . Implement onQueryLoaded
from ItemEventProtocol to receive the callback. Requires that you are already loged in.

Parameters:

containerId is the numeric id for the container you want to query. This would need to be retrieved from the parent
container.
For root container, see Account.

filter can be used to set parameters for the query. See Filter for details.
delegate uses callback onQueryLoaded() or onLoadError() in class ItemEventProtocol.

Usage:

C++

CBE::ItemDelegatePtr itemDelegate = getPtr();

CBE::Filter filter;

filter.setAscending(false);

filter.setDataType(CBE::ItemType::Container);

cloudbackend->query(containerId, filter, itemDelegate);

For more details on advanced queries and setQuery(std::string) and the other Advanced query filters, see the QUERY user guide
document.

CloudBackend - Copyright © 2020-2022



https://www.cloudbackend.com/docs/QUERYug.html

2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 6/27

Listeners
Declaration:

C++

void addListener(CBE::ItemDelegatePtr delegate);

Description:

Adds a listner that will recieve updates as changes occur on the account.
Note! Accounts are always updated automa�cally, but the no�fica�on of the update is provided by the listener func�onality.
removeListener should always be called when you stop using the delegate.

Parameters:

delegate is a class implementa�on of ItemEventProtocol class.

Usage:

C++

cloudbackend->addListener(itemDelegate);

Declaration:

C++

void removeListener(CBE::ItemDelegatePtr delegate);

Description:
Removes the listener that is passed in.

Parameters:

delegate is the previously passed in class object ItemEventProtocol class.

Usage:

C++

cloudbackend->removeListener(itemDelegate);

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 7/27

CloudBackend class Utility
Declaration:

C++

static CBE::ContainerPtr castContainer(CBE::ItemPtr item);

Description:

This casts an item to a container.

Parameters:

item is the item you want to cast to a container. This is intended as a helper func�on.

Usage:

C++

CBE::ContainerPtr container = cloudbackend->castContainer(item);

Declaration:

C++

static CBE::ObjectPtr castObject(CBE::ItemPtr item);

Description:

This casts an item to an object.

Parameters:

item is the item you want to cast to an object. This is intended as a helper func�on.

Usage:

C++

CBE::ObjectPtr object = cloudbackend->castObject(item);

Declaration:

C++

std::string version();

Description:

This returns the version of the SDK and can be used for debugging.

Usage:

C++

std::cout << "CloudBackend SDK version: " << cloudBackend->version() << std::endl;

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 8/27

class Account

Account currently offers access to a root container and has addi�onal informa�on on the account like the users first and last
name.
The rootContainer is a useful star�ng point that can then be used to query, create and perform other func�ons.
The account is returned by the instance of CloudBackend you received when calling logIn().
The rootContainer for the account is a good place for you to start querying or crea�ng data.

C++

CBE::AccountPtr account = cloudBackend->account()

It holds useful informa�on such as:

Root container
Declaration:

C++

CBE::ContainerPtr rootContainer account->rootContainer()

Description:
This returns the rootContainer for the account.

Usage:

C++

CBE::ContainerPtr rootContainer account->rootContainer();

Root container id
Declaration:

C++

CBE::ContainerId id1

Description:

This returns the rootContainerId for the account.

Usage:

C++

CBE::ContainerId id1 account->rootContainer()->id();

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 9/27

Account Data
Declaration:

C++

CBE::user_id_t userId1 account->userId();

Description:
This returns the account id of the user.

Declaration:

C++

std::string username1 account->username();

Description:
This returns the username of the user.

Declaration:

C++

std::string password1 account->password();

Description:

This references the password of the account.

Declaration:

C++

std::string source1 account->source();

Description:

This returns the source iden�fier for the tenant of the account.

Declaration:

C++

std::string firstName1 account->firstName();

Description:

This returns the name of the user.

Declaration:

C++

std::string lastName1 account->lastName();

Description:

This returns the surname of the user.

Declaration:

C++

CBE::ContainerPtr rootContainer1 account->rootContainer();

Description:

This returns the rootContainer for the account.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 10/27

class Container
Containers provides a convenient way to organize data in your account and can be used to hold objects and other sub-containers in
a hiearchical tree.

To start working with data in an account one can begin with the rootcontainer located on the account. Here you can start crea�ng
objects, uploading, querying container contents, and crea�ng sub-containers. E.g.

C++

CBE::ContainerPtr rootContainer cloudBackend->account()->rootContainer();

rootContainer->query(itemDelegate);

rootContainer->createObject(mapOfKeyValues);

This will receive callbacks from the library. It is wrapping a class where you have implemented the desired func�ons from
ItemEventProtocol.

Queries
Declaration:

C++

virtual void query(CBE::ItemDelegatePtr delegate);

Description:
Call to get a list of items in the container.

Parameters:

delegate uses callback onQueryLoaded() or onLoadError() in class ItemEventProtocol.

Declaration:

C++

virtual void query(CBE::Filter filter, CBE::ItemDelegatePtr delegate);

Description:

Call to get a filtered list of items in the container.

Parameters:

filter can be used to set parameters for the query. See Filter for details.
delegate uses callback onQueryLoaded() or onLoadError() in class ItemEventProtocol.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 11/27

Adding data
Declaration:

C++

virtual CBE::ObjectPtr createObject(std::string name, CBE::ItemDelegatePtr delegate, std::map<std::string, SDK_tuple<s

Description:
Creates an object with op�onal indexed tags for faster searches.

Parameters:

name is the �tle name of the object.
delegate uses callback onObjectAdded() or onItemError() in class ItemEventProtocol.
metadata

[indexed]

is a map called Obj_KV_Map with the tag (key), the value of that tag and if it is indexed or not.
indexed is op�onal
for more info look at star�ng sec�on or look for details in com.cbe-source folder and Obj_KV_Map.java

Declaration:

C++

virtual CBE::ObjectPtr upload(const std::string& name, const std::string& path, CBE::TransferUploadDelegatePtr delegat

Description:

Uploads to container an object with the given file name and path. The object is instantly returned with a temporary id. Once the
response from the server is called back, the object gets updated with the correct unique object id.

Parameters:

name is the name of the object.
path is the path to the object.
delegate uses callback onObjectUploaded(), onChunkSent() or onObjectUploadFailed() in class TransportEventProtocol.

Declaration:

C++

virtual CBE::ObjectPtr upload(const std::string& name, uint64_t length, char* byteData, CBE::TransferUploadDelegatePtr

Description:

Uploads to the container an object with the given binary data held in memory. The object is instantly returned with a temporary
id. Once the response from the server is called back, the object gets updated with the correct unique object id.

Parameters:

name is the name of the object.
length is the length of the object in bytes.
byteData the byte array containing the data.
delegate uses callback onObjectUploaded(), onChunkSent() or onObjectUploadFailed() in class TransportEventProtocol.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 12/27

Organization
Declaration:

C++

virtual ContainerPtr create(const std::string& name, CBE::ItemDelegatePtr delegate);

Description:
This creates a sub-container inside this container, to be used for adding objects.

Parameters:

name is the name for the container.
delegate uses callback onContainerAdded() or onItemError() in class ItemEventProtocol.

Declaration:

C++

virtual void move(CBE::container_id_t destinationId, CBE::ItemDelegatePtr delegate);

Description:

Move is used to move container with its content to user specified loca�on e.g. id of other container or to root container.

Parameters:

destinationId is the id of the container to which it should be moved to.
delegate uses callback onContainerMoved() or onItemError() in class ItemEventProtocol.

Declaration:

C++

virtual void remove(CBE::ItemDelegatePtr delegate);

Description:

This will delete the container and all its content.

Parameters:

delegate uses callback onContainerRemoved() or onItemError() in class ItemEventProtocol.

Declaration:

C++

virtual void rename(const std::string& name, CBE::ItemDelegatePtr delegate);

Description:

This changes the name of the container.

Parameters:

name is the new name.
delegate uses callback onContainerRenamed() or onItemError() in class ItemEventProtocol.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 13/27

ACL
ACLs can be set on either individual objects or for complete container tree structures containing both sub containers and objects.

The data type for se�ng ACL for objects and containers are defined in object and container.

Below is a list of permissions with some comments:

 0 = no permissions, this alternative should be set to be sure a user can not access anything and should be
called before or right after unsharing a Container / container structure or Object.
 1 = read only, enables the user to query and download.
 2 = write only, enables the user to upload to a shared container and rename a shared object or container.
However if there are multiple sub containers in the structure the user will not be able to see this since they
can not query.
 3 = read/write, combination of 1 and 2 and can be used for creating or uploading objects to any sub
container in a container tree and rename/download objects.
 4 = delete, this would most efficiently be used if you share temporarily an object (picture for instance)
that the user can remove once seen.
 5 = read/delete, this allows a user to remove containers and objects in a share.
 6 = write/delete, this is necessary to be able to move objects and containers within the shared container.
 7 = read/write/delete, enables rename/upload/download/move/create and remove.
 8 = changeACL only, enables a user to set new acls on a container/object. When doing that remember to
include the original owner otherwise ownership will change.
 9 = read/changeACL.
 10 = write/changeACL.
 11 = read/write/changeACL.
 12 = delete/changeACL.
 13 = read/delete/changeACL.
 14 = write/delete/changeACL.
 15 = all permissions meaning read/write/delete/changeACL.
 The value is calculated as the sum of changeACL (8) + delete (4) + write (2) + read (1).

Declaration:

C++

virtual void setACL(std::map<CBE::user_id_t, CBE::permission_status_t> toUserPermissions, CBE::ShareDelegatePtr delega

Description:
Set the Access control list of the container. For containers set does set the whole container tree, with all its sub items as well.
Remember this is set and not update so every�me you set, all userids that should be there must be included.

Parameters:

toUserPermissions is a class implemen�ng javas AbstractMap where the key is the userId and the value is the permission you
want to set. Mul�ple users can be set through one call to setACL.

delegate is a shared pointer to the class implemen�ng ShareDelegate, and is a shared pointer of the template class
ShareEventProtocol.

Usage:

C++

std::map<CBE::user_id_t,CBE::permission_status_t> userIdPermissionsMap;

userIdPermissionsMap.insert(std::pair<CBE::user_id_t,CBE::permission_status_t>(account2->userId(),3));

userIdPermissionsMap.insert(std::pair<CBE::user_id_t,CBE::permission_status_t>(account3->userId(),5));

userIdPermissionsMap.insert(std::pair<CBE::user_id_t,CBE::permission_status_t>(account4->userId(),7));

container->setACL(userIdPermissionsMap, shareDelegate);

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 14/27

Declaration:

C++

virtual void getACL(CBE::ShareDelegatePtr delegate);

Description:
Get the ACL (Access Control List) of a container/object.

Parameters:

delegate is a shared pointer to the class implemen�ng ShareDelegate, and is a shared pointer of the template class
ShareEventProtocol.

Sharing
At present Sharing the container gives the user read permissions for the container and all its sub-items.
Note! This might change in the future.

Declaration:

C++

virtual void share(user_id_t toUserGroup, std::string description, CBE::ShareDelegatePtr delegate);

Description:

Share a container/object with another user/group. This provides the user the ability to access what has been shared to them via
the listAvailableShares command, see class ShareManager. ACL should have been set prior to calling this. To allow users to view
and change shared informa�on see ACLs.

Parameters:

toUserGroup user id or group id to share to.
description name iden�fying this specific share between you and the user/group.
delegate is a shared pointer to the class implemen�ng ShareDelegate.

Declaration:

C++

virtual void unShare(uint64_t shareId, CBE::ShareDelegatePtr delegate);

Description:

Remove a previously given share of the container to a specific shareId. Each share is unique between user/group and the one
sharing. This is represented with a unique share id.

Parameters:

shareId the unique id for a share between the owner and other user/group.
delegate is a shared pointer to the class implemen�ng ShareDelegate.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 15/27

class ShareManager
This provides calls to see what you have shared or has been shared to you. Shares are given by a user to other users. The shared
container/object must have an ACL specifying the rights given to the specific user.

Declaration:

C++

virtual void listAvailableShares(CBE::ShareDelegatePtr delegate);

Description:

Lists the shares that have been shared to you. This will give you informa�on similar to a query but with specific share informa�on.

Parameters:

delegate is a callback class implemen�ng the ShareEventProtocol class.

Declaration:

C++

virtual void listMyShares(CBE::ShareDelegatePtr delegate);

Description:

Lists shares that have been shared by you to others. This will give you informa�on similar to a query but with specific share
informa�on.

Parameters:

delegate is a callback class implemen�ng the ShareEventProtocol class.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 16/27

class Item
Item is the base class for both containers and objects. It contains data that can be found on both and allows them to be presented
together in a queryResult.

Query results returns a list of items. Item can be cast to Objects or Containers by calling

C++

CBE::ContainerPtr item = CBE::CloudBackend::castContainer(item);
or
std::static_pointer_cast<CBE::Object>(item);

Item data
Declaration:

C++

virtual CBE::item_id_t id() const;

Description:
This returns an items id.

Declaration:

C++

virtual CBE::container_id_t parentId() const;

Description:

This returns the id of the Items parent.

Declaration:

C++

virtual std::string name() const;

Description:

This returns the name.

Declaration:

C++

virtual std::string path() const;

Description:

This returns the path to the item. It may not return anything if it has not been set.

Declaration:

C++

virtual CBE::user_id_t ownerId() const;

Description:

This returns the owners id.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 17/27

Declaration:

C++

virtual std::string username() const;

Description:
This returns the username of the Containers owner.

Declaration:

C++

virtual CBE::date_t created() const;

Description:
This returns the crea�on date in Unix �me.

Declaration:

C++

virtual CBE::date_t updated() const;

Description:

This returns the updated date and �me in Unix �me.

Declaration:

C++

virtual CBE::date_t deleted() const;

Description:

This returns the deleted date in Unix �me.

Declaration:

C++

virtual CBE::item_t type() const;

Description:

This specifies if the item is a Object (=4) or Container (=8).

Declaration:

C++

virtual uint64_t length() const;

Description:

This returns the byte size of an object (i.e. file size).

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 18/27

class Object
Objects are a representa�on of data stored in CloudBackend. They can either contain the complete data or represent data stored
and be used to access that data. Object requests that involve server communica�on take an implementa�on of either
ItemEventProtocol class, TransferEventProtocol class or ShareEventProtocol class as one of the parameters. How to create a
protocol is discussed in the protocol sec�on.

Object features example

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 19/27

Downloading
Declaration:

C++

virtual void download(const std::string& path, CBE::TransferDownloadDelegatePtr delegate);

Description:
This downloads the object with path from a container to local file store.

Parameters:

path to where it will be downloaded.
delegate is a callback class implemen�ng the TransportEventProtocol class.

Declaration:

C++

virtual void download(CBE::TransferDownloadDelegatePtr delegate);

Description:

This download the object with binary data from the cloud and passes it to the delegate. This is data is on the heap and you are
responsible for calling delete on it, though we may change it to a shared pointer in the future.

Parameters:

delegate is a callback class implemen�ng the TransportEventProtocol class.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 20/27

Modifying
Declaration:

C++

virtual void move(CBE::container_id_t destinationContainerId, CBE::ItemDelegatePtr delegate);

Description:
Move object to another container.

Parameters:

destinationContainerId is the container Id it will be moved to.
delegate is a callback class implemen�ng the ItemEventProtocol class.

Declaration:

C++

virtual void rename(const std::string& name, CBE::ItemDelegatePtr delegate);

Description:

This changes the name of the object.

Parameters:

name is the name of the object.
delegate is a callback class implemen�ng the ItemEventProtocol class.

Declaration:

C++

virtual void remove(CBE::ItemDelegatePtr delegate);

Description:

This will delete the object from the cloud container.

Parameters:

delegate is a callback class implemen�ng the ItemEventProtocol class.

Declaration:

C++

virtual void updateKeyValues(CBE::ItemDelegatePtr delegate, std::map<std::string, SDK_tuple<std::string, bool>> metad

Description:

Adds keyValue data to the exis�ng object, if data has the same name it will be overwri�en, otherwise it will add to the exis�ng
keyValue on the object.

Parameters:

delegate is a callback class implemen�ng the ItemEventProtocol class.
metadata

[indexed]

is a map with the tag (key), the value of that tag and if it is indexed or not.
indexed is op�onal

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 21/27

Object data
Declaration:

C++

virtual std::string getMimeType() const;

Description:
This returns the mime type of the object e.g. xml/text or jpg etc.

Declaration:

C++

virtual std::map< std::string, SDK_tuple<std::string, bool> > keyValues();

Description:
This returns all the keyValues.

Object Streams
Declaration:

C++

virtual void downloadStream(const std::string& path, uint64_t streamId, CBE::TransferDownloadDelegatePtr delegate);

Description:

This downloads the stream # with stream id, to a path of your choice. To get which streams are added on a object use getStream.

Parameters:

path is the path you want to download the stream to.
streamId specifies which stream you want by first calling getStream and then choose which one to download.
delegate is a callback class implemen�ng the ItemEventProtocol class.

Declaration:

C++

virtual std::vector<CBE::Stream> getStreams(CBE::ItemDelegatePtr delegate);

Description:

This returns the streams a�ached to the Object, use object.streams() to view. Then use the Streams data to put into the
downloadStream(..) call above.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 22/27

class Query Result
A QueryResult contains a list of items that meet query or search criteria that the user establishes. The simplest query is the
contents of a container. For informa�on regarding using the Items you get, see the Item sec�on. More complex queries can be
performed on individual containers or the en�re account and require the objects match user defined criteria from object names to
meta data. Meta data is matching pairs of data a�ached to an Object like ar�st and "Nirvana" or la�tude and "58.41". More
complex queries require passing in a filter with informa�on on what you want to query for. See the Filter sec�on.

For more details on advanced queries see the QUERY user guide document.

Query data
Declaration:

C++

virtual std::vector<CBE::ItemPtr> getItemsSnapshot();

Description:
Returns a copy of a vector containing the items for the queryResult. The queryResult will update when new data comes in but the
copy will not. If itera�ng make sure to create a variable for a local copy.

Usage:

C++

std::vector<CBE::ItemPtr> itemSnapshot = queryResult ->getItemsSnapshot();

for (std::vector<CBE::ItemPtr>::iterator it = itemSnapshot.begin(); it != itemSnapshot.end(); ++it) {

 std::cout << (*it)->name() << std::endl;

}

Declaration:

C++

virtual uint64_t itemsLoaded();

Description:
This tells how many items are in the queryResult.

Declaration:

C++

virtual uint64_t totalCount();

Description:
This tells how many total items in the cloud match the query result. This may be more than loaded.

Declaration:

C++

bool bypassCache;

Description:

This was added to allow users to bypass cached data when pulling data stored on other users accounts as no�fica�ons are
currently not implemented for this and it will not update automa�cally.

CloudBackend - Copyright © 2020-2022



https://www.cloudbackend.com/docs/QUERYug.html

2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 23/27

class Filter
A Filter is a tool for performing more advanced queries on an account. They allow the specifica�on of a wide range of criteria from
a specific range of items to meta data matching. See the SDK Filter.java file and the QUERY user guide for more details.

Declaration:

C++

CBE::Filter filter;

Description:

Filter can be used to see what has been loaded like containerIds, matching meta data, offsets and addi�onal data.

Usage:

C++

CBE::Filter filter;

filter.setAscending(false);

filter.setCount(50);

filter.setQuery("type:image/png");

CloudBackend - Copyright © 2020-2022



https://www.cloudbackend.com/docs/QUERYug.html

2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 24/27

Protocols
To manage asynchronous communica�on we define a set of callbacks in protocol func�ons. You will create a class that inherits a
protocol and implements the func�ons for the callbacks you wish to receive from that protocol. See the SDK
include/CBE/Protocols header directory for more details.

The callbacks should come in a separate thread from the one they were called in. Multple treads can run simultaneously to not
block. Mul�ple calls on the same object may be queue requests if they could be affected by a previous request. As a last measure
calls can �meout if they are taking too long to complete.

C++

#include "CBE/Protocols/AccountEventProtocol.h"

class AccountEventImplementation : virtual public CBE::AccountEventProtocol {

 public:

 virtual void onLogin(uint32_t atState, CBE::CloudBackendPtr cloudbackend);

 virtual void onError(uint64_t operationId, persistence_t faileAtState, uint32_t code, std::string reason, std::str

}

AccountEventProtocol
This provides callbacks that will be used when you call logIn() and have inherited AccountEventProtocol.

onLogin() should implement code to run: a�er the login has been successful.
onError() — if the login has failed.

OnError is only ever triggered in response to a call ini�ated by the current SDK. It will be in a different thread than it is called
from.
onLogout() and onCreated() are not used.

See also:

C++

See the SDK include/CBE/Protocols/AccountEventProtocol.h header file for more details.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 25/27

ItemEventProtocol
ItemEventProtocol provides callbacks that will be used when you perform ac�ons on a Container or Object. Addi�onally it can be
used to receive callbacks for query(). Finally, if you addListner() ItemEvents that trigger on the server, including crea�ng an item
will callback to the listener you added. It should be inherited by a class you want to receive these callbacks and you should
implement any callbacks you wish to trigger.

onObjectAdded() should implement code to run: a�er an object has been added.
onMetadataAdded() — a�er metadata has been added.
onObjectMoved() — a�er an object has been moved.
onObjectRemoved() — a�er an object has been removed.
onObjectRenamed() — a�er an object has been renamed.
onObjectUpdated() — a�er an object has been updated.
onStreamsLoaded() — a�er an object has been updated with a stream.
onContainerAdded() — a�er a container has been added.
onContainerMoved() — a�er a container has been moved.
onContainerRemoved() — a�er a container has been removed.
onContainerRenamed() — a�er a container has been renamed.
onContainerRestored() — a�er a container has been restored a�er being deleted.
onQueryLoaded() — a�er a query was made.
onLoadError() should implement code to run: if a query fails, e.g. a filter reques�ng a container or object that does not exists.
onItemError() — if an error regarding an item occurred, e.g. create rename, move, remove.

See also:

C++

See the SDK include/CBE/Protocols/ItemEventProtocol.h header file for more details.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 26/27

ShareEventProtocol
This provides callbacks that will be used when you call listAvailableShares() or listMyShares() and have inherited
ShareEventProtocol.

onListAvailableShares() should implement code to run: a�er a query for available shares that have been shared to you.
onListMyShares() — a�er a query for shares that you have shared to other accounts or groups.
onContainerACLAdded() — a�er an Access Control List has been added to a container.
onObjectACLAdded() — a�er an Access Control List has been added to an object.
onContainerAclLoaded() — a�er an Access Control List for a container has been loaded.
onObjectAclLoaded() — a�er an Access Control List for an object has been loaded.
onContainerShared() — a�er a container and its content has been shared by you to somebody.
onContainerUnShared() — a�er a container and its content has been unshared by you.
onObjectShared() — a�er an object has been shared by you to somebody.
onObjectUnShared() — a�er an object has been unshared by you.
onShareError() should implement code to run: if an error regarding a share has occured.
onACLError() — if a getACL or setACL has failed or is forbidden.

See also:

C++

See the SDK include/CBE/Protocols/ShareEventProtocol.h header file for more details.

TransferEventProtocol
TransferEventProtocol is used for uploading and downloading files to containers.

onObjectUploaded() should implement code to run: a�er a file has been uploaded.
onChunkSent() — a�er a file chunk has been uploaded.
onObjectUploadFailed() — if there was an error with the upload.
onChunkReceived() should implement code to run: a�er a file chunk has been recieved.
onObjectDownloaded() — a�er a file has been downloaded.
onObjectBinaryDownloaded() — a�er a text file has been loaded on the memory heap.
Note! This is downloaded as byte[] data and you are responsable for the management of your heap memory.
onObjectDownloadFailed() — if there was an error with the download.

See also:

C++

See the SDK include/CBE/Protocols/TransferEventProtocol.h header file for more details.

CloudBackend - Copyright © 2020-2022



2022-06-14 15:52 CloudBackend SDK wide API overview

https://www.cloudbackend.com/docs/API.html 27/27

Synchronous vs. Asyncronous
Many calls to the CBE SDK return a synchronous and asynchronous response. This leads to a decision in how you wish to work
based on priori�es. All remote communica�on within the CBE takes place asynchronously. However updates are made to the local
cache of data on client requests. When the remote request completes a callback to a delegate you have implemented.

Working synchronously allows one to immediately act on data they have sent to the server. This however means that it is possible
someone elsewhere will be looking at different data than you are. Addi�onally if a request fails, requests dependent on the success
of that request that appear complete will be rolled back.

Working asynchronously means that you wait un�l you receive a response in your delegate to make a follow up request. Working
this way guarantees everything you are presen�ng to your client has been propagated to the edge and will be what is retrieved if
another client communicates with the edge. Addi�onally you will not have requests you believe are complete rolled back.

The CloudBackend Synchronous area and naming conven�ons may evolve in the future. Please, check back in coming versions of
this document.

CloudBackend - Copyright © 2020-2022



