
2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 1/10

QUERY user guide

version 1.3.5.2

2021-04-28

CloudBackend - Copyright © 2020-2021

2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 2/10

Document overview
The following QUERY user guide document will give an overview on how to use the query calls in the SDK of CloudBackend (CBE).
This is done by lis�ng the code and some added usage examples.

Conventions
Describing text is printed in font Calibri. Descrip�ons inside lis�ng tables uses font family serif.

CloudBackend - Copyright © 2020-2021

2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 3/10

Advanced query filters
Simple queries are performed by retrieving the en�re contents of one or mul�ple containers. More complex queries are performed
on the same set of containers using a filter. Please note that this documenta�on is a work in progress as from �me to �me refers to
internal states, hidden and abstracted by the SDK.

Informa�on how to apply Filters with code using the SDK can be found in the .h header files.

A query is performed by calling the query with filter. The payload can include the following fields:

Payload field Descrip�on

container id The ID of the container that is to be listed/seached (a decimal number). More than one <container> element
may appear, provided that all IDs belong to the same container root.

query The query. See below for more information about queries.
(optional)

filter A regular expression that is used to filter each result entry. See below for more information.
(optional)

offset The offset of the first object entry to return. The default, if unspecified, is 0.
(optional)

count The number of entries to return. The default is 100.
(optional)

order The sort order. Can be one of published, updated, title, length, s1, s2, s3 and s4. The default if not present is to
sort by relevance according to the search criteria.
(optional)

locale A locale (like en_US or sv_SE) to be used when sorting. If unspecified or illegal, the C locale will be used.
(optional)

numeric Use numeric sorting, so that Q9 comes before Q10.
(optional)

ascending Can be true or false. The default is true.

include_deleted Can be true or false. The default is false.
Entry with <dc:deleted></dc:deleted> tag is a deleted file.

checksum Can be true or false. The default is false.
Entry is returned with the <dc:md5>123</dc:md5> tag, which contains the checksum of the main stream.
NOTE: If set to 'true', it will make most other parameters like query, filter and order ineffective.

datasrc Can be default or db. Default is key/value for the SDK, but if checksum is set to true the it will be set to db. The
SDK can change the datasrc to db or key/value by setting it to default. Other clients can of course set it to db if
required.

CloudBackend - Copyright © 2020-2021

2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 4/10

The query language
The CloudBackend Core object indexing service is based on a key/value database. Being an indexing service, it indexes words in an
object and allows fast matching based on both boolean and probabilis�c methods.

An index database excels at finding objects (in this case, object metadata entries) that include a specific word (called a term). Think
of it as an index at the end of a book, where you can quickly locate all the pages that refer to a specific word or concept. Mul�ple
result sets can then be merged based on common boolean opera�ons like AND, OR, NOT etc or simply weighted based on the
relevance (which is more useful in an off-line indexing scenario than metadata queries.)

The query syntax
The query language is very simple, yet rather powerful. A query is a white-space separated list of search terms, where each term
has one of the following forms:

 (+/-)? (prefix)? (term with no blanks)
 (+/-)? (prefix)? (term with ' and blanks)
 (+/-)? (prefix)? (term with " and blanks)

A term is the word or phrase you wish to search for. Phrases are always enclosed by single or double quotes. The prefix, which is
op�onal, is the key name. Finally, you may include a + or - sign in front of the prefix (or term, if there is no prefix) to indicate that
the term must or must not exist.

Some fields will also be indexed stemmed (see next sec�on). Searching for terms in these fields will actually search for the
stemmed term. By using the phrase syntax (single or double quotes) or by beginning the term with a capital le�er will force the
query parser to search for the word as-is instead.

Building the query tree
All search terms are combined into a query tree before being sent to the key/value database, using the following rules:

All "plus" terms are combined with an AND rela�on, which simply means that all of them must exist.
All "minus" terms are combined with an OR rela�on, and the group is added to the query with an AND_NOT rela�on, meaning
that none of the terms must exist.
All un-prefixed terms with neither a plus or minus sign in front of them are combined with an OR rela�on, and then added to
the query with an AND_MAYBE rela�on. This means that they do not have to be present, but entries that do include them will
get higher ranking than those which don't.
Prefixed terms with neither a plus or minus sign in front of them are grouped by their prefix. All terms with the same prefix
are grouped with an OR rela�on, and all groups are then combined with an AND rela�on. The group of groups is then added
to the query with an FILTER rela�on, which is equivalent with an AND rela�on, except that FILTER terms do not affect the
ranking at all.

See below for example queries that might make it easier to understand how the query tree is created from a query string.

CloudBackend - Copyright © 2020-2021

2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 5/10

Fields and prefixes
There are a few pre-defined fields in the metadata that are bound to a so-called query prefix, and they are listed below. A query
prefix is just a way of saying that the specific word has a special meaning and should be searchable as such. For example the �tle
prefix, means that the words in the �tle for an object will not only be indexed as-is, but also with a prefix. �tle:spring thus finds
entries where the word spring is found in the �tle. Note, �tle has nothing to do with the name of the author or creator of an
object.

The list of pre-defined prefixes are shown below, as well at the entry field they are bound to. Using the metadata capabili�es in the
SDK, the developer can add an arbitrary number of key/value pairs to an objects metadata. They can be in the form of non-indexed
key/value pairs or indexed key/value pairs that are searchable using filters (but take up more space).

All defined prefixes are boolean prefixes, which means that if specified in a query, boolean seman�cs apply and not probabilis�c.

Some of the fields (currently author, content, rights, keyword, recipient, s1, s2, s3, s3, summary, tag and �tle) will also be indexed
stemmed, that is, in addi�on to being indexed as-is (but with a prefix), the root of the word will also be indexed (with the prefix). A
query with the term keyword:phones will also match an entry with the field <keyword>phone</keyword>.

The field keyword, s1, s2, s3, s4, summary and �tle and content will addi�onally be indexed without the prefix, since they are
assumed to include textual content.

Addi�onally, the fields published, updated, link rel="alternate" length="..." and �tle are treated special to make it possible to sort
the query result based on these fields.

The inner working of metadata has been modelled a�er the W3C Atom standard with the ability for user custom extensions of
key/value data and tags.

CloudBackend - Copyright © 2020-2021

2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 6/10

Query
prefix

Key/Value field Descrip�on

author atom:entry The author's name, email or URI.

country dc:country A two-letter ISO country code (same as used in domain names).

(no prefix) atom:content Full-text index

object dc:object The object ID as a decimal number.

dc:enddate This key is not indexed as-is. See below.

flag dc:flag A general-purpose flag that can be used by applications.

container dc:container The ID of the container the object is located in (a decimal number).

dc:atom:id This key is not indexed.

keyword dc:keyword Keywords that describe the object.

lang dc:lang The language of the object as a two-character ISO code.

month This prefix is calculated from the startdate and enddate keys.

namespace dc:namespace The XML namespace if the object is a XML document.

atom:published This key is not indexed as-is. See below.

pubmonth This prefix is calculated from the atom:published key.

pubweek This prefix is calculated from the atom:published key.

pubyear This prefix is calculated from the atom:published key.

recipient dc:recipient The recipient's name, email or URI.

rights atom:rights A copyright string.

s1 dc:s1, ni:s1 A general purpose prefix that is also sortable.

s2 dc:s2, ni:s2 A general purpose prefix that is also sortable.

s3 dc:s3, ni:s3 A general purpose prefix that is also sortable.

s4 dc:s4, ni:s4 A general purpose prefix that is also sortable.

schema atom:category type="schema"
scheme="..."

The W3C schema of objects of type XML document if they have a schema
defined.

dc:startdate This key is not indexed as-is. See below.

summary atom:summary A summary of the object's content.

tag dc:tag A user-specified tag (like "family", "London", "My wedding" etc).

�tle atom:title A objects title or rather simply the title of the object.

type atom:link rel="alternate"
type="..."

The objects MIME type.

week This prefix is calculated from the startdate and enddate keys.

year This prefix is calculated from the startdate and enddate keys.

CloudBackend - Copyright © 2020-2021

2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 7/10

Flag values in use
Flags are applica�on specific and defined by the developer. These flags are used for some of the built in capabili�es of
CloudBackend Core.

User/group entries

hidden
avatar

IMAP mail

answered
deleted
flagged
seen
dra�
recent

CloudBackend - Copyright © 2020-2021

2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 8/10

Special handling of published, startdate and enddate
The fields published, startdate and enddate will not be indexed as-is. Instead, the dates specified will be recalculated as
pubyear/year (the year with 4 digits), pubmonth/month (the month as two digits, 01 to 12) and pubweek/week (the ISO week
number, 01 to 53). In case of startdate and enddate, the full range will be indexed.

For example, give the following fields in the Atom entry,

<atom:entry>

 <atom:published>2020-08-30T11:12:57Z</atom:published>

 <dc:startdate date="2020-12-10" time="01:54:00" zone="Z"/>

 <dc:enddate date="2021-01-09" time="00:00:00" zone="Z"/>

 <!-- more ... -->

</atom:entry>

The following terms will be indexed:

pubyear:2020
pubmonth:08
pubweek:35
year:2020
year:2021
month:12
month:01
week:50, week:51, week:52, week:01, week:02

The idea is that any object, be it a text document, picture, calendar entry, email or to-do note, can be marked with a date or date
range. Relevant objects can then be found quickly and presented in a calendar or reminder view in an applica�on.

(Note that since the year, month and week is indexed individually, the applica�on will have to post-filter the search result, since the
query "({year:2020 AND month:12})" will yield a false match.)

Special handling of content
The content element will always be stripped from the entry. However, it is s�ll indexed (as-is and stemmed), which means that this
field is perfect for full-text indexing. The client can thus easily create a full-text index of any object simply by transforming the
object to plain text, put the text inside a content element in the object's entry and call saveMetadata.

Unknown prefixes
When an unknown prefix is found, it is simply indexed as-is, with prefix. It is not added without prefix and it is not stemmed. This
applies to all user defined key/values and tags.

Please note that key/value pairs and tags that in the SDK are defined as non-indexed will not be possible to query. They are
retrieved by querying the object on other parameters and then retrieving the metadata to view them. It is recommended to use
non-indexed key/value pairs as the default for all meta-data that is not required to be searchable as this is much more economical
with less used storage space for the tenant. It will also increase the query performance for the keys that should be searchable.

CloudBackend - Copyright © 2020-2021

2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 9/10

Example queries

Normal, plus and minus terms

dogs cats +black -cool -"hot dogs"

The query above searches for items that include the words "dog" or "cat" in one of several "text" fields (currently keyword, s1, s2,
s3, s4, summary and �tle or content). Note the singular form! Un-prefixed words are stemmed. Addi�onally, the word "black" must
be present in the object for a match. The word "cool" and the phrase "hot dogs", on the other hand, must not be present at all.

The query above will be translated into the following query tree:

(("black") AND_MAYBE ("dog" OR "cat")) AND_NOT ("cool" OR "hot dogs")

If the query instead had been wri�en using an ini�al capital le�er on the words "dogs" or "cats", or had these words been quoted,
like this:

"dogs" cats +black -cool -"hot dogs"

The resul�ng query three would have been:

(("black") AND_MAYBE ("dogs" OR "cats")) AND_NOT ("cool" OR "hot dogs")

(Note the plural form on "dogs" and "cats".)

CloudBackend - Copyright © 2020-2021

2022-06-14 17:08 CloudBackend Query user guide

https://www.cloudbackend.com/docs/QUERYug.html 10/10

Prefixed terms

Consider the following query:

title:money

It will simply find all entries that include the word "money" in the �tle. The next query will find all entries that describe JPEG or GIF
images (based on the objects mime-type, which requires that the object have a stream 0 from where the mime-type is deducted,
objects can not be queried on mime-type for stream 1..n), and has the word "money" in the �tle.

title:money type:image/png type:image/gif

Note that since the type field is searched for twice, the terms image/png and image/gif are combined with an OR rela�on, like this:

"title:money" AND (type:image/png OR type:image/gif)

This is probably the expected behaviour for most fields, but perhaps not all. Suppose one would like to find all entries that include
the words "money" and "dollars" in the �tle. The following query would not work:

title:money title:dollar

This is since it would return all entries with either the word "money" or the word "dollar" in it. Here the prefixed "plus" terms
should be used:

+title:money +title:dollar

The query above will correctly translate into the correct query tree:

title:money AND title:dollar

Date queries

The following query example will return a set of candidate entries to be displayed in a calendar view of January 2021:

year:2021 month:01

CloudBackend - Copyright © 2020-2021

